Exploiting Duplication to Minimize the Execution Times of
Parallel Programs on Message-Passing Systems

Yu-Kwong Kwok and Ishfag Ahmad

Department of Computer Science
Hong Kong University of Science and Technology, Hong Kong

Abstract!

Communication overhead is one of the main factors that
can limit the speedup of parallel programs on message-
passing parallel architectures. This limiting factor is more
predominant in distributed systems such as clusters of
homogeneous or heterogeneous workstations. However,
excessive communication overhead can be reduced by
redundantly executing some of the tasks of a parallel
program on which other tasks critically depend. In this
paper, we study the problem of duplication-based static
scheduling of parallel programs on parallel and distributed
systems. Previous duplication-based scheduling algorithms
assumed the availability of unlimited number of
homogeneous processors. In this paper, we consider more
practical scenarios: when the number of processors is
limited, and when the system consists of heterogeneous
computers. For the first scenario, we propose an algorithm
which minimizes the execution of a parallel program by
controlling the level of duplication according to the number
of processors available. For the second scenario, we design
an algorithm which simultaneously exploits duplication
and processor heterogeneity to minimize the total execution
time of a parallel program. The proposed algorithms are
suitable for low as well as high communication-to-
computation ratios.

1 Introduction

During the past few years, we have witnessed a
spectacular growth of parallel and distributed systems. This
is because a variety of innovative architectures have been
designed exploiting advancements in processor technology,
low overhead switches, fast communication channels, and
rich interconnection network topologies. Despite these
advances, most existing parallel computers suffer from the
problem of excessive inter-processor communication
overhead. The problem is even more severe in distributed
systems where multiple machines physically located at
different sites are used as a single virtual parailel machine.
The individual machines in the system can be homogeneous
or heterogeneous. An example of this kind of hardware
platform is a collection of networked workstations also
called workstation farms or clusters. Slower interprocessor

1. This research was supported by Hong Kong Research Grants
Council under contract number HKUST179/93E.

0-8186-6427-4/94 $04.00 © 1994 IEEE

426

communication in parallel computers and networked
distributed systems can be a major performance
degradation factor for programs involving frequent
message-passing between different program modules. One
way to alleviate this problem is to employ task duplication
in parallel program scheduling. Task duplication means
scheduling a parallel program by redundantly allocating
some of its tasks on which other tasks of the program
critically depend. This reduces the start times of waiting
tasks and eventually improves the overall execution time of
the entire program.

It is well known that the multiprocessor scheduling
problem in its many variants is NP-complete [4], [5], [6].
Practical solutions are mostly based on heuristics [12], [13],
(14]. Many efficient scheduling algorithms employ a two-
phase approach [1], [7], [8], [15]. In the first phase,
priorities are assigned to the tasks. In the second phase,
tasks are scheduled to appropriate processors one after the
other according to their priorities. Various methods are used
to determine task priorities. It has been shown that priorities
based on the critical path can generate near-optimal
schedules [9]. The critical path of a parallel program is an
important attribute because it determines the lower bound
on the overall execution time of the program. Even with an
efficient scheduling algorithm, it may happen that some
processors are idle during different time periods because the
tasks assigned to them are waiting to receive some data
from the tasks assigned to some other processors. If these
idle time slots can be utilized efficiently by identifying the
critical tasks and then redundantly allocating them in those
slots, the overall execution time of the program can be
further reduced. However, using task duplication makes the
scheduling problem more complicated. The scheduling
algorithm not only needs to observe the precedence
constraints among tasks but also needs to recognize which
tasks to duplicate and how to fit them in the idle time slots.

In this paper, we study the problem of scheduling
parallel programs using task duplication for homogeneous
and heterogeneous message-passing multicomputers.
Duplication based scheduling is relatively less explored
with a few exceptions [3], [10]. We have proposed an
algorithm which outperforms two previously reported
algorithms using task duplication [2]. However, the
previous algorithms as well as our new algorithm assume
the availability of unlimited processors. To relieve this

constraint and consider duplication-based scheduling for
more practical cases, we propose an algorithm which
assumes limited number of processors and takes this
number as an input parameter. The algorithm is self-
adjusting in that it controls the level of duplication
according to the number of available processors. We also
design an algorithm for heterogeneous processors systems.
This algorithm simultaneously exploits duplication and
heterogeneity to minimize the execution time of a parallel
program. The level of heterogeneity indicates the relative
variation in the processing power of available machines.
The proposed algorithm exploits this heterogeneity by
scheduling the longer scheduling sequences on faster
processors. We have used a number of task graphs
including a number of parallel algorithms such as Gaussian
elimination, FFT, LU-decomposition, Laplace equation
solver, and various other syntactic graphs such as tree, fork-
joins and completely random graphs, to test the
performance of the proposed algorithms.

This paper is organized as follows. In Section 2, we give
an overview of two recently reported and our previously
proposed duplication-based scheduling algorithms, when
the number of processors is unlimited. In Section 3, we
present our new scheduling algorithms and discuss some of
the principles used in their design. An example is used in
illustrating the application of these algorithms. In Section 4,
we first describe the workload used in testing the
performance of our algorithms, and then present
experimental results and performance comparisons. The
last section contains the concluding remarks.

2 Related Work

Using task duplication in static scheduling is a relatively
unexplored research problem and only a few scheduling
algorithms have been proposed. One such algorithm, called
Duplication Scheduling Heuristic (DSH) has been proposed
in [10]. Another algorithm, called Bottom-up-Top-down
Duplication Heuristic (BTDH), has been proposed in [3].
The DSH algorithm tries to minimize the start time of each
task by duplicating its parent tasks into the idle time gap
between the ready time and the start time of the task. The
BTDH algorithm is essentially an extension of the DSH
algorithm. The main difference between them is that the
BTDH algorithm does not stop duplicating the parent tasks
of a task even if its start time is increased temporarily. Due
to this difference, the BTDH algorithm can generate a better
schedule compared to the DSH algorithm when a given
parallel program’s communication-to-computation ratio
(CCR), defined as the average inter-task communication
cost divided by the average computation cost, is very high
(e.g., 100). We have recently proposed a task duplication
based scheduling algorithm called the Critical Path Fast
Duplication (CPFD) algorithm [2], which outperforms the

427

DSH and the BTDH algorithms consistently by a
considerable margin. The CPFD algorithm tries to exploit
all available idle time slots on a processor for task
duplication so as to minimize the start time of each task. In
addition, the CPFD algorithm always selects the most
important task for scheduling at each step so that task
duplication can be very effective in reducing the overall
execution time. However, all of these algorithms assume
the availability of unlimited number of processors. Such an
assumption makes the scheduling algorithm less complex
because of fewer constraints and therefore makes it easier to
produce good schedules. Furthermore, this assumption may
not always hold for more practical cases. Thus, our
objectives in this work are to propose an algorithm that can
minimize the total execution time of a program by
exploiting duplication despite only a limited number of
homogeneous processors, and to propose an algorithm for
heterogeneous distributed systems.

3 The Proposed Algorithms

In our study, we assume that the processor network is
fully-connected, and communication can take place
simultaneously with computation. We represent a parallel
program by a directed acyclic graph where each node in the
task graph, labelled by n,, represents a task. We use w(n,) to
denote the computation cost of the task. An edge in the task
graph represents the data dependency between two tasks.
We use c;; to denote the communication cost of the edge.
The intra-processor communication cost is assumed to be
negligible. Thus, if two tasks are scheduled to the same
processor, ¢;; is equal to zero. A node without any parent is’
called an entry node, while a node without any child is
called an exit node. In the subsequent discussion, we will
use the term node to denote a parallel program task.

It is not possible to determine the start time of a node
before determining the start times of its parent nodes. Even
when all the parents nodes of a node have been scheduled,
there is an additional constraint on its start time which is due
to the communication edges from its parent nodes. This is
explained by the following definition.

Definition 1: Let MINPE (n,) be the processor on which
the k-th parent node n, of n; is scheduled at its earliest
start time, then the communication- constrained earliest
start time of n; on a processor J, denoted by CEST{(n, J), is
defined as

maxy ., {FT(":‘; MINPE(n,-k)) + c,.k‘.}

where n; has p parent nodes. The parent node that
maximizes the above expression is called the Very-
Important-Parent of n, and is denoted by VIP(n,).

Given the communication-constrained earliest start time
of a task on a processor, the following axiom governs the
decision of whether the node can be scheduled on that
processor.

Axiom I: A node n; can be scheduled to a processor J on
which the set of tasks {n g By o Ty } has been scheduled
if there exists some k such that

ST(nJM, J) —max {FT(n,k, J),CEST (n,)} 2w(n)

where k = 0, ...,m, ST (n, » J) = o, and
FT(n,,J) = 0. "

Intuitively, the axiom implies that a node cannot be
schedule to a processor unless that processor has an idle
time slot large enough to accommodate it. In case the node
can be scheduled, Axiom II given below determines its
actual start time.

Axiom II: The earliest start time of n; on processor J,
denoted by EST(n, J), is given by

max{FT(n,,J), CEST (n,J) }

where | is the minimum value of k satisfying the inequality
in Axiom I. If there does not exist such I, EST(n;, J) is
defined as .

It should be noted that both CEST{(n, J) and EST(n;, J)
are varying quantities; their values depend on the current
state of scheduling.

Scheduling of nodes requires an attribute for
determining the priorities of nodes [8], [9], which is given
by the following definitions.

Definition 2: A Critical Path (CP) of a task graph, is a set
of nodes and edges, forming a path from an entry node to
an exit node which has the largest sum of computation and
communication costs. A node on the CP is called a CPN
(Critical Path Node).

Definition 3: In a connected graph, an In-Branch Node
(IBN) is a node, which is not a CPN, and from which there
is a path reaching a CPN. An Out-Branch Node (OBN) is a
node, which is neither a CPN nor an IBN.

Definition 4: The OBN Binding is an ordering of OBNs
such that an OBN n; has a higher priority than another
OBN n; if n;’s depth is larger than n;’s, under the constraint
that the parent node of an OBN n; which is also an OBN,
always has higher priority than n..

From the above definitions, it can be noted that all the
IBNs of a CPN should be scheduled before the CPN itself is
scheduled. After all the CPNs have been scheduled, each of
the remaining OBNs can be scheduled according to the
OBN binding.

For selecting a processor, the start time of a node on a
processor is constrained by the communication with its
parent nodes. However, communication delay may be
reduced if we apply duplication to some parent nodes of the
candidate node. The following theorem governs the
duplication process in our proposed algorithms.

Theorem 1: At a particular scheduling step, for any node
n; and processor J, if

i) EST(n,J) = CEST(n,J), and

ii) EST(VIP (n, J),J) +w (VIP (n,J)) <EST(n,J),

428

EST(n, J) can be reduced by scheduling VIP(n;) to
processor J with ST(n,, J) set to EST(VIP(n;), J).
Proof: Let n, = VIP(n;) and K = MINPE(n,). Condition i)
implies
EST(n,]) = FT(n, K) +c,,
But X # J; otherwise
EST(n,J) = FT(n,J) = EST(n,,J) +w(n,)

contradicting condition ii). So we have
EST(n,J) = FT(n, K} +c,;

Scheduling 7, to processor J at time EST(n,, J), we have
FT(n,J) = EST(np, D) +w (np) <FT(n,K) +c,,
Thus, Axiom II is not governed by n, and EST{(n;, J) in turn

is reduced.ld

3.1 Algorithm for Unlimited Number of
Homogeneous Processors

In this section, we present the first algorithm, called the
Economical Critical Path Fast Duplication (ECPFD)
algorithm. The ECPFD algorithm assumes that the number
of processor available is limited. The algorithm adjusts the
degree of duplication according to the number of available
processors. Clearly, scheduling under the constraint of
limited available processors may lead to generating longer
schedule lengths than scheduling given unlimited number
of processors. Thus, the scheduling algorithm has to make
careful decision as to which processor is to be selected to
accommodate a node. The ECPFD algorithm is formalized
below. It should be noted that the number of processors
available in the underlying system is a parameter to the
ECPFD algorithm.

The ECPFD Algorithm:

(1) Determine a CP of the task graph. Break ties by selecting the
one with a larger sum of computation costs.

(2) For each CPN, recursively schedule all the IBNs reaching it,
in decreasing order of data arrival time, to processors that
give the smallest start times by using Theorem 1 to decide
whether a parent node of a node should be duplicated. Then,
schedule the CPN itself to a processor, among all available
processors, that allows it to start at the earliest time. Repeat
this step for the next CPN.

(3) Perform the OBN binding.

(4) Without using any duplication, schedule each OBN to an
‘already-in-use’ processor that gives the smallest sum of the
start times of the OBN and its critical child, which is the
node that has the heaviest communication, provided the
schedule length does not increase. If this fails, employ the
same duplication process for scheduling CPNs to minimize
the start time of the OBN.

The ECPFD algorithm first schedules all the CPNs as
well as the IBNs reaching them, which are the most
important nodes, to processors that give the smallest start
times. To make use of the available processors, the ECPFD
algorithm first attempts to schedule the OBNs, which are
relatively less important compared to the CPNs, to

processors already in use. No duplication is applied in order
to leave more space for subsequent scheduling. The ECPFD
algorithm, however, does not pack OBNs to processors
blindly. It selects the one which will not cause an increase
in schedule length in the next step by checking the potential
start time of a “critical” child node as well. If no processor
is suitable and there are still some unused processors, the
ECPFD reverts to schedule the OBN with duplication. This
is done to make an effective use of the new processor by
making an OBN start as early as possible. On the other
hand, if no new processor is available, ECPFD selects the
one which gives minimum increase in schedule length.
Since both dominant steps — step (2) and step (4) —
requires O(pem) time, where p is the number of processors
available, m is the number of nodes in the task graph and ¢
is the number of edges in the task graph, the complexity of
the ECPFD algorithm is also O(pem?).

3.2 Algorithm for Heterogeneous Processors

If the architecture of the distributed system is
heterogeneous, that is, some processors run faster than
others, schedule lengths can be significantly reduced
compared with scheduling on homogeneous systems by
properly utilizing the faster and slower processors. One
possible way is to schedule the CPNs on the fastest
processor. In order to tackle the scheduling problem on such
a system, we propose the second algorithm called
Heterogeneous Critical Path Fast Duplication (HCPFD)
algorithm,

To model a heterogeneous distributed system, a
parameter called variance factor (VF), which ranges from 0
to 1, is used. For a given program, suppose it takes T time
units to finish execution on the processor whose speed is the
average of all the processors. Then, on the fastest processor,
the execution time is equal to 7x (1-VF) while on the
slowest processor, it is equal to Tx (1+VF) . The
heterogeneous processor system is equivalent to a
homogeneous processor system in terms of the cumulative
processing power. We assume the computation costs of
nodes are statically determined on the processor which has
the average speed. The communication links in the system
are assumed to be homogeneous.

The HCPFD algorithm is formalized below. This
algorithm takes the number of processors and the VF as a
parameters.

The HCPFD Algorithm:

(1) Determine a CP of the task graph. Break ties by selecting the
one with a larger sum of computation costs.

For each CPN, recursively schedule all the IBNs reaching it,
in decreasing order of data arrival time, to processors that
give the smallest finish times by using Theorem 1 to decide
whether a parent node of a node should be duplicated. The
available processors are examined in decreasing order of
processing speed. Note that we have to use the parameter VF

@

429

to compute the finish time of a node on a particular
processor. Then, schedule the CPN itself to a processor,
among all available processors, that allows it to finish at the
earliest time. Repeat this step for the next CPN.
Perform the OBN binding.
Without using any duplication, schedule each OBN to the
fastest ‘already-in-use’ processor that gives the smallest sum
of the finish times of the OBN and its critical child provided
the schedule length does not increase (the critical child is the
node that has the heaviest communication link). If this fails,
employ the same duplication process for scheduling CPNs to
minimize the finish time of the OBN.
As the computation cost varies from processor to
processor, it is re-computed when checking Axiom I and
Theorem 1 for different processors. The processor which
gives the earliest finish time is selected to accommodate a
node. The set of processors for consideration includes the
fastest processors that accommodate the parent nodes of a
candidate node in addition to the one holding the VIP of the
candidate node. The complexity of the HCPFD algorithm is
also O(pem?).

©)
(C]

3.3 Illustrative Examples

In this section, we present example schedules generated
by the DSH, BTDH, CPFD algorithm, ECPFD and the
HCPFD algorithms. We use a task graph which represents
the macro data-flow task graph for the parallel Gaussian
elimination algorithm [11], [15] written in SPMD style. The
graph is shown in Figure 1(a). An optimal schedule without
duplication, which is generated by hand, is shown in Figure
1(b). The schedule length is 330 time units. It can be seen
that the nodes ny, n;, and n;s cannot start earlier because
they have to wait for the data from their parent nodes that
are scheduled to different processors. If their parent nodes
are properly duplicated, these nodes may start at the earliest
possible time and the schedule length may in turn be
reduced.

To illustrate the performance of the DSH algorithm and
the BTDH algorithm on this example, the HLFET (Highest
Level First with Estimated Times) [1] algorithm is used as
the auxiliary algorithm for determining node priorities. The
HLFET algorithm, which computes priority for a candidate
node by calculating the largest sum of computation costs
from an entry node to the candidate node, is shown to give
better results [3]. We call the two algorithms DSH/HLFET
and BTDH/HLFET to indicate that they use the HLFET
algorithm to determine node priorities. For this example
task graph, the DSH/HLFET algorithm and the BTDH/
HLFET algorithm generate the same schedule which is
depicted in Figure 2. Here, the duplicated nodes are shown
in shaded color, and the communication edges among nodes
are omitted for clarity. The schedule length is 320 time
units. Both algorithms do not apply duplication properly in
that n,3 cannot start earlier because of the inappropriate
scheduling of #n;5. The schedule generated by the CPFD

(a)

®)

300

330

Figure 1: (a) A parallel Gaussian elimination task graph
and (b) its optimal schedule without using duplication
(schedule length = 330 time units).

algorithm is shown in Figure 3. Here, the schedule length is
300 time units which is the best possible schedule using
duplication because all the CPNs start at their earliest
possible start times. The schedule generated by the ECPFD
algorithm is shown in Figure 4. Here, the schedule length is
310 time units but only 7 processors are used. The OBNSs n,,
ngand n;; are properly scheduled to processors already in
use. We also tested the ECPFD algorithm with 4 processors.
The schedule length is then 320 time units (not shown here)
which is the same as DSH and BTDH but at the expense of
smaller number of processors. Assuming that the
underlying system consists of 11 processors and the
computation time variance factor is 0.5, the schedule
generated by the HCPFD algorithm is shown in Figure 5. It

430

320

Figure 2: The schedule generated by the DSH/HLFET algorithm and
the BTDH/HLFET algorithm (schedule length = 320 time units). _

PE0O PE1 PE2 PE3 PE4 PES PE6 PE7 PES PE9 PEI0

Figure 3: The schedule generated by the CPFD
algorithm (schedule length = 300 time units).

310
Figure

4: The schedule generated by the ECPFD
algorithm (schedule length = 310 time units).

PE4

PE2

PES

150

182

Figure 5: The schedule generated by the HCPFD
algorithm onto heterogeneous processors with variance
factor = 0.5 (schedule length = 182 time units).

can be seen that the computation costs on PE 0, which is the
fastest processor, are half of that on a homogeneous
processor. The schedule length (182 time units) is
significantly smaller compared to the schedule generated by
the CPFD algorithm which assumes a homogeneous
system. Here, the HCPFD algorithm exploits the
heterogeneity of the processors by proper scheduling of
important nodes (CPNs) to the faster processors in the
system.

4 Performance and Comparison

The proposed algorithms were simulated on a SUN
SPARC IPX using various f task graphs. Our objective was
to compare the schedule lengths produced by the three
proposed algorithms for various graph structures, different
values of CCR and the task graph size in terms of the
number of nodes. For comparison, the DSH and BTDH
algorithms were also simulated.

The suite of graphs consisted of 7 types of task graphs.
The first type of task graphs represents the parallel
Gaussian elimination algorithm. This task graph
corresponds to the macro data-flow graphs for the this
algorithm written in a SPMD style for distributed-memory
multicomputers. The second type of task graphs represents
the macro data-flow graph for the Laplace equation solver.
The third type of graphs represents the LU-decomposition
algorithms. In addition to these regular graphs which
represent the three parallel algorithms, we generated some
synthetic graphs whose structures are commonly
encountered in various algorithms. One such graph is the in-
tree graph in which each node has only one child. We
generated this type of graphs by randomly selecting a

431

number from a uniform distribution to be the number of
levels in the tree. Given the total number of nodes to be
generated, the number of nodes on each level was also
randomly selected. Links between two adjacent levels or
across levels were also randomly generated. The fifth type
of graphs is the out-tree graph in which each node has only
one parent. The sixth type of graphs is the fork-join graph
which is a hybrid of an in-tree task graph and an out-tree
task graph. In a fork-join task graph, there is a root node
(with depth 0) which spawns a number of children. After the
execution of all the children, the resulting data goes to the
input of a single node which either spawns another set of
children or terminates the whole parallel program. Finally,
the seventh type consists of completely random graphs [15].
Within each type of graph structure, we used 7 values of
CCR which are 0.1, 0.5, 1.0, 1.5, 2.0, 5.0 and 10.0. For each
of these values, we generated 10 different graphs with the
number of nodes varying from 10 to 100 with an increment
of 10. Thus, for each type of graph structure and each value
of CCR, 70 graphs were generated with the total number of
graphs corresponding to 490. For each graph, the weights of
the individual nodes and the communication edges are
different and are randomly generated.

It has been shown in [2] that the performance of the
CPFD algorithm is consistently superior than the other two
algorithms. When CPFD is compared against DSH, it
performs better for large and small values of CCRs. The
average improvement in schedule lengths varies from
1.56% to 10.47%. The CPFD algorithm also outperforms
the BTDH algorithm for all values of CCR. There is no
single case out of 490 experiments, where CPFD perform
worse than DSH or BTDH.

4.1 Limited Homogeneous Processors

To analyse the performance of the ECPFD algorithm
which takes the number of processors as an input parameter,
we made three comparisons between the ECPFD and the
BTDH algorithms. We did not made the comparison of
ECPFD and DSH since BTDH is already shown to be better
than DSH [2]. For the first comparison, we observed the
number of processors used by the BTDH algorithm for each
task graph, and then used the same number of processors as
the input to the ECPFD algorithm for that particular task
graph. For the second comparison, we reduced the number
of processors to 80%. In the third comparison, we used only
50% processors. The results of these experiments are given
in Table I. For each comparison, there are seven rows in the
table, with each row corresponding to results of running the
scheduling algorithms on 70 tasks graphs for that value of
CCR. The first columns indicate the comparative
performance of the scheduling algorithms in terms of
schedule lengths of these 70 task graphs. For example,
when ECPD is compared with BTDH using the same
number of processors for CCR equals 0.1, it generates

shorter schedules in 20 cases, generates longer schedules in
12 cases and generates the same schedule lengths in 38
cases. The next three columns indicate the average
percentage improvement, maximum percentage
improvement and average percentage degradation in the
schedule lengths produced. In addition, for each
comparison, the Table I provides the cumulative results for
all values of CCR.

Table I: A performance comparison of ECPFD
and BTDH with limited number of processors.

IThe worst % degradation in schedule length I"'—

| The average% improvement in schedule length

]

lNumbcr of times it performs the same

[Number of times it performs worse

|Number of times it performs better |
I

0.1 20 12 112 [1651 | 3.96
ECPFD 0.5 30 3 37 177 |1222 | 134
with 1.0 40 0 30 273 |1259 | 0.00
BTDH 1.5 42 3 25 297 |1248 | 2.69
(same 5 2.0 35 5 30 223 | 1198 {1242
number of §{O - - - -
processors) 5.0 23 6 41 0.21 10.12 { 44.57
100 20 10 40 099 |1056 |37.62
All 210 39 241 | 176 |1651 4457
0.1 18 19 33 033 |1299 |11.25
ECPFD
compared 0.5 25 7 38 089 |11.72 | 2868
with 1.0 39 0 31 227 | 11.63 | 0.00
BIDH — f 15 [a9 7 24 | 15 [1248 0129
(ECPFD |f5
usesonly |0 |29 32 12 26 125 | 980 [16386
80% 5.0 22 21 27 -139 | 102 | 4457
processors) 10.0 17 18 35 273 | 1055 | 5427
All 192 84 214 | 032 |1299 |5427
o1 1 49 10 1164 | 661 | 5333
ECPFD s | @ o) 12 | 1061618 |5333
with 10 21 36 13 811 | 658 |4838
BTDH 15 18 39 13 574 | 6.09 | 103.68
@ s 1
uscsonly | X 17 44 9 7.05 | 867 | 6392
50% 5.0 13 48 9 935 | 969 |133.55
P) 100 1 51 8 1699 | 9.19 | 18465
All 100 316 74 | 992 | 969 | 18465
From the results of the first comparison, ECPFD

collectively performs better than BTDH in 210 cases and
performs worse in only 39 cases. There were a few cases in
which ECPFD performed quite poorly. These cases
accounted for the negative value of average percentage
improvement when CCR was equal to 5.0 and 10.0.
However, ECPFD performed better than BTDH for more
number of times. In the second comparison, when 80%
processors were used, ECPFD again outperforms BTDH for
all values of CCR except 5.0 and 10.0. At these values of
CCR, the performance of both algorithms is about the same.
When the number of processors is reduced to 50%, ECPFD
is still able to outperform BTDH in 100 cases. These results
are better understood by analysing the efficiency which is

432

defined as the serial time of the task graph divided by the
parallel time (schedule length) divided by the number of
processors used. The efficiency of BTDH and ECPFD with
100%, 80% and 50% processors is shown in Figure 6(a) and
Figure 6(b) for varying number of nodes in a task graph and
values of CCR, respectively. The efficiency of the CPFD
algorithm is also included for comparison. These results for
Figure 6(a) and Figure 6(b) were obtained by taking the
averages across all cases by fixing the number of nodes and
CCR, respectively. Figure 6(a) in a sense indicates the
scalability of these algorithms which is an important
measure of the parallelism captured by the scheduling
algorithm. On the other hand, Figure 6(b) indicates the
effect of CCR which is a crucial reason for using
duplication in scheduling. The results of these figures
indicate that the CPFD algorithm is slightly less efficient
than the BTDH algorithm. However, as shown earlier,
CPFD clearly performs better than BTDH if no limit on the
number of processors is imposed. The ECPFD algorithm is
clearly more efficient because it drastically reduces the
number of processors at the expense of little degradation in
schedule length. It also scales well with the graph size and
remains more efficient at larger values of CCR. The choice
of using CPFD or ECPFD obviously depends on the
number of processors available.

07
06|
05 CIBTDH-HLFET
T 04l EICPFD
'é EECPFD 100%
5 o3 F EEECPFD 80%
0.2 B MECPFD 50%
0.1 ik
3 3 k | g § f i
"o 20 30 40 50 60 70 80 90 100
Number of Nodes
DBTDH-HLFET
EICPFD
EECPFD 100%
BAECPFD 80%
MECPFD 50%

Figure 6: Efficiency of the BTDH, CFPD and ECPFD (100%, 80% and
50% processors) algorithms for various task graph sizes and CCRs.

(a)

(b)

4.2 Heterogeneous Processors

In this section, we present the results of the HCPFD
algorithm on heterogeneous processors. The algorithm, as
stated above, is designed to minimize the schedule length
by taking advantage of heterogeneity. We used the same set
of task graphs for testing the performance of the HCPFD
algorithm. We used 4 values of the variance of
heterogeneity which were 0.2, 0.3, 0.5 and 0.9. The results
of our experiments are provided in Figure 7(a) and Figure
7(b) showing the percentage improvement in schedule
length obtained with HCPFD over CPFD for different graph
sizes and CCRs, respectively. These figures indicate that
HCPFD exploits heterogeneity by yielding an improvement
in schedule length. This is because HCFPD systematically
schedules more important nodes to faster processors and
less important nodes to slower processors. The charts
shown in these figures indicate that better schedule length is
obtained if the variance factor is large.

80

70
E
2 60
2 sol- OHCPFD 0.2
gl ERHCPFD 0.3
R EIHCPFD 0.5
% %0 BHCPFD 0.9
8 20| - : B
z

10 -2k

° | AR

10 20 30 40 50 60 70 80 80 100
Number of Nodes

€
)
£
2 CIHCPFD 0.2
g EHCPFD 0.3
®» EAHCPFD 0.5
g, MHCPFD 0.9
2

Figure 7: Percentage improvement in schedule length with HCPFD (VF
=0.2,03,0.5, 0.9) over CPFD at various task graph sizes and CCRs.

5 Conclusions

We have proposed two scheduling algorithms using task
duplication technique. These scheduling algorithms can be
particularly useful when the CCR of a parallel algorithm on
a given system is high. The technique used in our proposed
algorithms is to systematically decompose the task graph
into CP, IBN and OBN bindings. These bindings help the
algorithms to first identify the relative importance of nodes
and then, according to their importance, enable them to start

433

them at their earliest possible start times. The ECPFD
algorithm is designed to control the degree of duplication
according to the number of available processors. The
ECPFD algorithm is more efficient than previously
proposed algorithms because it uses less number of
processors. The HCPFD algorithm which is designed to
exploit the heterogeneity of the processors can be useful for
distributed systems.

References

[1] T.L. Adam, K. Chandy, and J. Dickson, “A Comparison of
List Scheduling for Parallel Processing Systems,”
Communications of the ACM, vol. 17, pp. 685-690, Dec.
1974.

1. Ahmad and Y K. Kwok, “A New Approach to Scheduling

Parallel Programs Using Task Duplication,” to appear in

Proc. Int’l Conf. on Parallel Processing, Aug. 1994.

Y.C. Chung and S. Ranka, “Application and Performance

Analysis of a Compile-Time Optimization Approach for List

Scheduling Algorithms on Distributed-Memory

Multiprocessors,” Proc. of Supercomputing’92, pp. 512-

521, Nov. 1992.

E.G. Coffman, Computer and Job-Shop Scheduling

Theory, Wiley, New York, 1976.

H. El-Rewini and T. Lewis, “Scheduling Parallel Programs

onto Arbitrary Target Machines,” Journal of Parallel and

Distributed Computing, vol. 9, no. 2, pp. 138-153, Jun.

1990.

MR. Gary and D.S. Johnson, Computers

Intractability, W H. Freeman and Company, 1979.

R.L. Graham, E.L. Lawler, J.K. Lenstra, and A .H.G. Rinnoy

Kan, “Optimization and Approximation in Deterministic

Sequencing and Scheduling: A Survey,” Annals of Discrete

Mathematics, no. 5, pp. 287-326, 1979,

T.C. Hu, *“Parallel Sequencing and Assembly Line

Problems,” Oper. Research, vol. 19, no. 6, pp. 841-848,

Nov. 1961.

W.H. Kohler, “A Preliminary Evaluation of the Critical Path

Method for Scheduling Tasks on MultiProcessor Systems,”

IEEE Trans. on Computers, vol. C-24, pp. 1235-1238,

Dec. 1975.

[10] B. Kruatrachue and T.G. Lewis, “Grain Size Determination
for Parallel Processing,” IEEE Software, pp. 23-32, Jan.
1988.

[11] R.E. Lord, J.S. Kowalik and S.P. Kumar, “Solving Linear
Algebraic Equations on an MIMD Computer,” Journal of
the ACM, 30(1), pp. 103-117, Jan. 1983.

[12] C. Papadimitriou and M. Yannakakis, “Toward an
Architecture Independent Analysis of Parallel Algorithms,”
SIAM Journal of Computing, vol. 19, pp. 322-328, 1990.

[13] V. Sarkar, Partitioning and Scheduling Parallel
Programs for Multiprocessors, MIT Press, Cambridge,
MA, 1989.

{14] B. Shirazi, M. Wang and G. Pathak, “Analysis and
Evaluation of Heuristic Methods for Static Scheduling,”
Journal of Parallel and Distributed Computing, no. 10,
pp. 222-232, 1990.

[15] M.Y. Wu and D.D. Gajski, “Hypertool: A Programming Aid
for Message-Passing Systems,” IEEE Trans. on Parallel
and Distributed Systems, vol. 1, no. 3, pp. 330-343, Jul.
1990.

(2]

(3]

(4]
(5]

and

[6]
(7

(8]

9]

